metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Wuping Liao, Chunhua Hu and Richard Dronskowski*

Institut für Anorganische Chemie, RWTH Aachen, Prof.-Pirlet-Straße 1, 52056 Aachen, Germany

Correspondence e-mail: drons@hal9000.ac.rwth-aachen.de

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(N-C) = 0.007 \text{ Å}$ R factor = 0.022 wR factor = 0.055 Data-to-parameter ratio = 15.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Hexaaquabis(dicyanoguanidine)terbium(III) trichloride

In the title compound, $[Tb(C_2H_4N_4)_2(H_2O)_6]Cl_3$, the coordination of the terbium(III) ion is a square-antiprismatic arrangement by six O atoms and two monodentate cyanoguanidine (cnge) molecules forming covalent Tb—N bonds of 2.446 (4) Å through their nitrile N atoms. The crystal structure consists of metal ion layers separated by the organic molecules along the *a* axis. Received 30 October 2003 Accepted 4 November 2003 Online 15 November 2003

Comment

As a commercially important compound, cyanoguanidine (cnge) or dicyandiamide, the dimeric form of cyanamide (H₂NCN), is a versatile precursor for the synthesis of organonitrogen compounds. The coordination chemistry of this species has been the object of considerable attention. In most cases, it acts as a neutral monodentate ligand, binding to the metal through its cyano N atom only. There are some complexes with transition metals such as copper(II) (Ammar *et al.*, 2002; Batsanov *et al.*, 1997), copper(I) (Batsanov *et al.*, 1996), zinc(II) (Harrison *et al.*, 2001; Pickardt & Kühn, 1996a), silver(I) (Dronskowski & Liu, 2003; Bessler *et al.*, 2003), cadmium(II) and mercury(II) Pickardt & Kühn, 1996b). However, until now, there have been no reports on rare earth-cnge complexes. We report here the structure of such a complex, *viz.* the title compound, (I) (Fig. 1).

The Tb atom is eight-coordinated by two enge and six water molecules. The structure is a distored square-antiprism (D_{4d}) , with the distortions due mainly to the difference in the Tb–O and Tb–N distances. The enge ligand coordinates the Tb atom via its nitrile N atom, with a Tb–N distance of 2.446 (4) Å. Typical distances for Tb–N bonds are 2.38– 2.62 Å (Allen, 2002). The values of the geometric parameters for (I) (Table 1) are reasonable, when considering similar internuclear interactions in other eight-coordinate Tb species (Bell & Smith, 1990). In the present compound, two enge molecules substitute the two coordinated chloride anions of [Tb(H₂O)₆Cl₂]Cl.

The hydrogen bonds are listed in Table 2. The cnge molecule is a hydrogen-bonding ligand that may act as a donor

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Mo Ka radiation

reflections

 $\mu = 4.26 \text{ mm}^{-1}$

T = 293 (2) K

Prism, colourless $0.31 \times 0.08 \times 0.05 \text{ mm}$

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\rm max} = 0.43 \ {\rm e} \ {\rm \AA}^2$ $\Delta \rho_{\rm min} = -0.60 \ {\rm e} \ {\rm \AA}^{-3}$

980 Friedel pairs

 $\theta = 2.7 - 28.3^{\circ}$

Cell parameters from 6486

Figure 1

Molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level for non-H atoms [symmetry code: (') -x, -y, z].

Figure 2 Crystal packing of the title compound, viewed down the c axis.

(amino, NH_2) and as an acceptor (cyanimino, $=N-C\equiv N$). In this compound, the N-H donor systems from the amino group have close contacts to the chloride anions. The hydrogen bonding between the water molecules and the chlorine anions (O-H···Cl interactions) is indicated by short O···Cl distances of 3.03–3.16 Å (Pimental & McClellan, 1960). There is also hydrogen bonding (2.79 Å) between the imino N atom and the water molecule $(N2 \cdot \cdot \cdot O2)$.

The cnge molecule is essentially planar and the maximum distance from the least-squares plane is 0.014 Å. The coordination does not severely affect the structural parameters of cnge (Fernanda et al., 1993). The structure as a whole consists of layers stacked along the a direction (shown in Fig. 2) and the distance between two metal layers is 7.356 (1) Å. The organic molecules (cnge) separate and stabilize the metal ion layers.

Experimental

The title compound was prepared using the rheological method (semi-solid phase reaction; Zhang et al., 1999). For a traditional synthesis, TbCl₃ [1.6 mmol, obtained by dissolving 0.30 g Tb₄O₇ (Aldrich, 99.99%) in concentrated HCl and evaporating the excess acid], H₂NCN (cyanamide, Aldrich, 99%; 0.1 g, 2.4 mmol) and appropriate amount of water were mixed into a semi-solid phase and sealed in a glass bottle. After two months, some colourless crystals

with strong green luminescence under UV radiation were obtained. On the other hand, the sample obtained by slow evaporation of a solution of TbCl3 and H2NCN was simply dicyandiamide $[NCNC(NH_2)_2].$

Crystal data

[Tb(C2H4N4)2(H2O)6]Cl3 $M_r = 541.55$ Orthorhombic, Fdd2 a = 29.425 (5) Å b = 9.2613 (14) Å c = 13.690(2) Å $V = 3730.6 (10) \text{ Å}^3$ Z = 8 $D_x = 1.928 \text{ Mg m}^{-3}$

Data collection

Bruker AXS APEX CCD diffractometer w scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.290, \ T_{\max} = 0.808$ 6486 measured reflections Refinement Refinement on F^2

2185 independent reflections 2065 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.027$ $\theta_{\rm max} = 28.3^{\circ}$ $h = -39 \rightarrow 39$ $k = -12 \rightarrow 8$ $l = -18 \rightarrow 17$

Extinction correction: SHELXL97

Extinction coefficient: 0.00174 (7) Absolute structure: Flack (1983),

Flack parameter = -0.030(13)

 $R[F^2 > 2\sigma(F^2)] = 0.022$ wR(F²) = 0.055 S = 1.102185 reflections 142 parameters All H-atom parameters refined $w = 1/[\sigma^2(F_o^2) + (0.0315P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$

Table 1

Selected geometric parameters (Å, °).

Tb-O1	2.432 (3)	Tb-O3	2.374 (3)
Tb-O2	2.356 (4)	Tb-N1	2.446 (4)
O2 ⁱ -Tb-O2	93.0 (3)	O3-Tb-N1	76.55 (13)
O3 ⁱ -Tb-O3	131.88 (17)	O1-Tb-N1	74.50 (11)
O1-Tb-O1 ⁱ	140.49 (16)	N1-Tb-N1 ⁱ	83.32 (19)
O2-Tb-N1	139.99 (12)		

Symmetry code: (i) -x, -y, z.

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1-H11···Cl1 ⁱⁱ	0.82 (2)	2.34 (2)	3.156 (3)	174 (6)
$O1-H12\cdots Cl2$	0.82(2)	2.36 (3)	3.141 (3)	159 (8)
O2-H21···N2 ⁱⁱⁱ	0.82(2)	2.00(3)	2.785 (5)	160 (6)
O2−H22···Cl1 ^{iv}	0.82(2)	2.29 (4)	3.077 (3)	159 (8)
$O3-H31\cdots Cl1^{v}$	0.81(2)	2.31(2)	3.117 (4)	172 (6)
O3−H32···Cl1	0.81(2)	2.23 (2)	3.033 (3)	171 (7)
$N3-H33\cdots Cl2^{vi}$	0.853 (19)	2.49 (2)	3.306 (4)	161 (4)
N3-H34···Cl1	0.86 (2)	2.43 (3)	3.243 (5)	159 (5)
$N4-H41\cdots Cl2^{vi}$	0.86(2)	2.71 (5)	3.480 (5)	149 (7)
$N4-H42\cdots O1^{vii}$	0.85 (2)	2.67 (3)	3.492 (6)	161 (6)

Symmetry codes: (ii) $\frac{1}{4} - x, \frac{1}{4} + y, \frac{1}{4} + z$; (iii) $x, \frac{1}{2} + y, z - \frac{1}{2}$; (iv) $x - \frac{1}{4}, \frac{1}{4} - y, z - \frac{1}{4}$; (v) $\frac{1}{4} - x, y - \frac{1}{4}, z - \frac{1}{4}$; (vi) $\frac{1}{4} + x, \frac{1}{4} - y, \frac{1}{4} + z$; (vii) $x, y - \frac{1}{2}, \frac{1}{2} + z$.

The initial positions of all H atoms were determined from difference Fourier maps and these atoms were refined isotropically. Due to some short N-H and O-H distances (less than 0.8 Å), we applied a soft restraint for all N-H and O-H bond lengths (0.86 Å for N-H and 0.82 Å for O–H; Sheldrick, 1998). The final refinement gave reasonable hydrogen-bond lengths and connectivities.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SMART*; data reduction: *SAINT-Plus* (Bruker, 1999); program(s) used to solve structure: *SHELXTL* (Sheldrick, 1998); program(s) used to refine structure: *SHELXTL*; molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXTL*.

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Ammar, M. K., Amor, F. B., Jouini, T. & Driss, A. (2002). J. Chem. Crystallogr. 32, 87–89.
- Batsanov, A., Begley, M. J., Hubberstey, P. & Stroud, J. (1996). J. Chem. Soc. Dalton Trans. pp. 1947–1949.
- Batsanov, A. S., Hubberstey, P., Russell, C. E. & Walton, P. H. (1997). J. Chem. Soc. Dalton Trans. pp. 2667–2672.
- Bell, A. M. T. & Smith, A. J. (1990). Acta Cryst. C46, 960-962.

- Bessler, K. E., de Sousa, A. T., Deflon, V. M. & Niquet, E. (2003). Z. Anorg. Allg. Chem. 629, 1091–1095.
- Bruker (1999). SAINT-Plus. Version 6.02. Bruker AXS Inc., Madison, Wisconson, USA.
- Bruker (2001). SMART. Version 5.624. Bruker AXS Inc., Madison, Wisconson, USA.
- Dronskowski, R. & Liu, X. H. (2003). Acta Cryst. C59, m243-m245.
- Fernanda, M., Carvalho, N. N. & Pombeiro, J. L. (1993). J. Organomet. Chem. 469, 179–187.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Harrison, W. T. A., Phillips, M. L. F., Stanchfield, J. & Nenofff, T. M. (2001). *Inorg. Chem.* 40, 895–899.
- Pickardt, J. & Kühn, B. (1996a). Z. Naturforsch. Teil B, 51, 1469-1472.
- Pickardt, J. & Kühn, B. (1996b). Z. Naturforsch. Teil B, 51, 1701-1706.
- Pimental, G. C. & McClellan, A. L. (1960). *The Hydrogen Bond*. San Francisco: Freeman Publishers.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1998). *SHELXTL*. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Zhang, K. L., Yuan, J. B., Yuan, L. J. & Sun J. T. (1999). *Chin. J. Inorg. Chem.* **15**, 549–552.